Far Field Boundary Condition for Convection Diffusion Equation at Zero Viscosity Limit

نویسندگان

  • JIAN-GUO LIU
  • WEN-QING XU
  • Jian-Guo Liu
  • Wen-Qing Xu
چکیده

In this paper, we give a systematic study of the boundary layer behavior for linear convection-diffusion equation in the zero viscosity limit. We analyze the boundary layer structures in the viscous solution and derive the boundary condition satisfied by the viscosity limit as a solution of the inviscid equation. The results confirm that the Neumann type of far-field boundary condition is preferred in the outlet and characteristic boundary condition. Under some appropriate regularity and compatibility conditions on the initial and boundary data, we obtain optimal error estimates between the full viscous solution and the inviscid solution with suitable boundary layer corrections. These results hold in arbitrary space dimensions and similar statements also hold for the strip problem. This model well describes the behavior at the far-field for many physical and engineering systems such as fluid dynamical equation and electro-magnetic equation. The results obtained here should provide some theoretical guidance for designing effective far-field boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Small Viscosity and Far Field Boundary Conditions for Hyperbolic Systems

In this paper we study the effects of small viscosity term and the far-field boundary conditions for systems of convection-diffusion equations in the zero viscosity limit. The far-field boundary conditions are classified and the corresponding solution structures are analyzed. It is confirmed that the Neumann type of far-field boundary condition is preferred. On the other hand, we also identify ...

متن کامل

An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit

The aim of this short paper is to explore a new connection between a conjecture concerning sharp boundary observability estimates for the 1-D heat equation in small time and a conjecture concerning the cost of null-controllability for a 1-D convection-diffusion equation with constant coefficients controlled on the boundary in the vanishing viscosity limit, in the spirit of what is done in [Pier...

متن کامل

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

Well-posedness of the Infinite Prandtl Number Model for Convection with Temperature-Dependent Viscosity

We establish the well-posedness of the infinite Prandtl number model for convection with temperature-dependent viscosity, free-slip boundary condition and zero horizontal fluxes.

متن کامل

Construction and Analysis of Lattice Boltzmann Methods Applied to a 1D Convection-Diffusion Equation

We construct and we analyze two LBM schemes build on the D1Q2 lattice to solve the 1D (linear) convectiondiffusion equation. We obtain these LBM schemes by showing that the 1D convection-diffusion equation is the fluid limit of a discrete velocity kinetic system. Then, we show in the periodic case that these LBM schemes are equivalent to a finite difference type scheme named LFCCDF scheme. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002